\(\int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [847]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 68 \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {B \text {arctanh}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {A \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

A*sin(d*x+c)*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(3/2)+B*arctanh(sin(d*x+c))*(b*cos(d*x+c))^(1/2)/d/cos(d*x+c)^(
1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {17, 2827, 3852, 8, 3855} \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {A \sin (c+d x) \sqrt {b \cos (c+d x)}}{d \cos ^{\frac {3}{2}}(c+d x)}+\frac {B \text {arctanh}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}} \]

[In]

Int[(Sqrt[b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(5/2),x]

[Out]

(B*ArcTanh[Sin[c + d*x]]*Sqrt[b*Cos[c + d*x]])/(d*Sqrt[Cos[c + d*x]]) + (A*Sqrt[b*Cos[c + d*x]]*Sin[c + d*x])/
(d*Cos[c + d*x]^(3/2))

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m + 1/2)*b^(n - 1/2)*(Sqrt[b*v]/Sqrt[a*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {b \cos (c+d x)} \int (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx}{\sqrt {\cos (c+d x)}} \\ & = \frac {\left (A \sqrt {b \cos (c+d x)}\right ) \int \sec ^2(c+d x) \, dx}{\sqrt {\cos (c+d x)}}+\frac {\left (B \sqrt {b \cos (c+d x)}\right ) \int \sec (c+d x) \, dx}{\sqrt {\cos (c+d x)}} \\ & = \frac {B \text {arctanh}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {\left (A \sqrt {b \cos (c+d x)}\right ) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d \sqrt {\cos (c+d x)}} \\ & = \frac {B \text {arctanh}(\sin (c+d x)) \sqrt {b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}+\frac {A \sqrt {b \cos (c+d x)} \sin (c+d x)}{d \cos ^{\frac {3}{2}}(c+d x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.74 \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\sqrt {b \cos (c+d x)} (B \text {arctanh}(\sin (c+d x)) \cos (c+d x)+A \sin (c+d x))}{d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Integrate[(Sqrt[b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(5/2),x]

[Out]

(Sqrt[b*Cos[c + d*x]]*(B*ArcTanh[Sin[c + d*x]]*Cos[c + d*x] + A*Sin[c + d*x]))/(d*Cos[c + d*x]^(3/2))

Maple [A] (verified)

Time = 5.06 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.84

method result size
default \(\frac {\left (-2 B \cos \left (d x +c \right ) \operatorname {arctanh}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+A \sin \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right ) b}}{d \cos \left (d x +c \right )^{\frac {3}{2}}}\) \(57\)
parts \(\frac {A \sin \left (d x +c \right ) \sqrt {\cos \left (d x +c \right ) b}}{d \cos \left (d x +c \right )^{\frac {3}{2}}}-\frac {2 B \,\operatorname {arctanh}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right ) b}}{d \sqrt {\cos \left (d x +c \right )}}\) \(71\)
risch \(\frac {2 i \sqrt {\cos \left (d x +c \right ) b}\, A}{\sqrt {\cos \left (d x +c \right )}\, d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}+\frac {\sqrt {\cos \left (d x +c \right ) b}\, B \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{\sqrt {\cos \left (d x +c \right )}\, d}-\frac {\sqrt {\cos \left (d x +c \right ) b}\, B \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{\sqrt {\cos \left (d x +c \right )}\, d}\) \(113\)

[In]

int((cos(d*x+c)*b)^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(-2*B*cos(d*x+c)*arctanh(cot(d*x+c)-csc(d*x+c))+A*sin(d*x+c))*(cos(d*x+c)*b)^(1/2)/cos(d*x+c)^(3/2)

Fricas [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 205, normalized size of antiderivative = 3.01 \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\left [\frac {B \sqrt {b} \cos \left (d x + c\right )^{2} \log \left (-\frac {b \cos \left (d x + c\right )^{3} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} A \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, d \cos \left (d x + c\right )^{2}}, -\frac {B \sqrt {-b} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sin \left (d x + c\right )}{b \sqrt {\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{2} - \sqrt {b \cos \left (d x + c\right )} A \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{d \cos \left (d x + c\right )^{2}}\right ] \]

[In]

integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

[1/2*(B*sqrt(b)*cos(d*x + c)^2*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + c))*sqrt(b)*sqrt(cos(d*x + c))*sin(
d*x + c) - 2*b*cos(d*x + c))/cos(d*x + c)^3) + 2*sqrt(b*cos(d*x + c))*A*sqrt(cos(d*x + c))*sin(d*x + c))/(d*co
s(d*x + c)^2), -(B*sqrt(-b)*arctan(sqrt(b*cos(d*x + c))*sqrt(-b)*sin(d*x + c)/(b*sqrt(cos(d*x + c))))*cos(d*x
+ c)^2 - sqrt(b*cos(d*x + c))*A*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2)]

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((b*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(5/2),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.42 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.76 \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {B \sqrt {b} {\left (\log \left (\cos \left (d x + c\right )^{2} + \sin \left (d x + c\right )^{2} + 2 \, \sin \left (d x + c\right ) + 1\right ) - \log \left (\cos \left (d x + c\right )^{2} + \sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right ) + 1\right )\right )} + \frac {4 \, A \sqrt {b} \sin \left (2 \, d x + 2 \, c\right )}{\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1}}{2 \, d} \]

[In]

integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

1/2*(B*sqrt(b)*(log(cos(d*x + c)^2 + sin(d*x + c)^2 + 2*sin(d*x + c) + 1) - log(cos(d*x + c)^2 + sin(d*x + c)^
2 - 2*sin(d*x + c) + 1)) + 4*A*sqrt(b)*sin(2*d*x + 2*c)/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x
 + 2*c) + 1))/d

Giac [F]

\[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right )}}{\cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c))/cos(d*x + c)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {b \cos (c+d x)} (A+B \cos (c+d x))}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\sqrt {b\,\cos \left (c+d\,x\right )}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\cos \left (c+d\,x\right )}^{5/2}} \,d x \]

[In]

int(((b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^(5/2),x)

[Out]

int(((b*cos(c + d*x))^(1/2)*(A + B*cos(c + d*x)))/cos(c + d*x)^(5/2), x)